
Team R4 – H. Lovett, A. Reddy, A. Robinson, M. Wearn

Instruction Set Summary
Mnemonic Syntax Semantics Flags Encoding Opcode Cond.

1 ADD ADD Rd, Ra, Rb Rd ← Ra + Rb c,v,n,z A 00010 -

2 ADDI ADDI Rd, Ra, #imm5 Rd ← Ra + imm5 c,v,n,z A 00110 -

3 ADDIB ADDIB Rd, #imm8 Rd ← Rd + imm8 c,v,n,z B 00011 -

4 ADC ADC Rd, Ra, Rb Rd ← Ra + Rb + c c,v,n,z A 00100 -

5 ADCI ADCI Rd, Ra, #imm5 Rd ← Ra + imm5 + c c,v,n,z A 00101 -

6 NEG NEG Rd, Ra Rd ← 0 - Ra c,v,n,z A 11010 -

7 SUB SUB Rd, Ra, Rb Rd ← Ra - Rb c,v,n,z A 01010 -

8 SUBI SUBI Rd, Ra, #imm5 Rd ← Ra - imm5 c,v,n,z A 01110 -

9 SUBIB SUBIB Rd, #imm8 Rd ← Rd - imm8 c,v,n,z B 01011 -

10 SUC SUC Rd, Ra, Rb Rd ← Ra - Rb - c c,v,n,z A 01100 -

11 SUCI SUCI Rd, Ra, #imm5 Rd ← Ra - imm5 - c c,v,n,z A 01101 -

12 CMP CMP Ra, Rb Ra - Rb c,v,n,z A 00111 -

13 CMPI CMPI Ra, #imm5 Ra - imm5 c,v,n,z A 01111 -

14 AND AND Rd, Ra, Rb Rd ← Ra AND Rb n,z A 10000 -

15 OR OR Rd, Ra, Rb Rd ← Ra OR Rb n,z A 10001 -

16 XOR XOR Rd, Ra, Rb Rd ← Ra XOR Rb n,z A 10011 -

17 NOT NOT Rd, Ra Rd ← NOT Ra n,z A 10010 -

18 NAND NAND Rd, Ra, Rb Rd ← Ra NAND Rb n,z A 10110 -

19 NOR NOR Rd, Ra, Rb Rd ← Ra NOR Rb n,z A 10111 -

20 LSL LSL Rd, Ra, #imm4 Rd ← Ra << imm4 n,z A 11111 -

21 LSR LSR Rd, Ra, #imm4 Rd ← Ra >> imm4 n,z A 11101 -

22 ASR ASR Rd, Ra, #imm4 Rd ← Ra >>> imm4 n,z A 11100 -

23 LDW LDW Rd, [Ra, #imm5] Rd ← Mem[Ra + imm5] - C 00000 -

24 STW SDW Rd, [Ra, #imm5] Mem[Ra + imm5] ← Rd - C 01000 -

25 LUI LUI Rd, #imm8 Rd ← {imm8, 0} - B 10100 -

26 LLI LLI Rd, #imm8 Rd ← {Rd[15:8], imm8} - B 10101 -

27 BR BR LABEL PC ← PC + imm8 - D - 000

28 BNE BNE LABEL (z==0)? PC ← PC + imm8 - D - 110

29 BE BE LABEL (z==1)? PC ← PC + imm8 - D - 111

30 BLT BLT LABEL (n&~v OR ~n&v)? PC ← PC + imm8 - D - 100

31 BGE BGE LABEL (n&v OR ~n&~v)? PC ← PC + imm8 - D - 101

32 BWL BWL LABEL LR ← PC + 1; PC ← PC + imm8 - D - 011

33 RET RET PC ← LR - D - 010

34 JMP JMP Ra, #imm5 PC ← Ra + imm5 - D - 001

PUSH Ra R7 ← R7 - 1; Mem[R7] ← Ra

PUSH LR R7 ← R7 - 1; Mem[R7] ← RL

POP Ra Ra ← Mem[R7]; R7 ← R7 + 1

POP LR RL ← Mem[R7]; R7 ← R7 + 1

37 RETI RETI PC ← Mem[R7] - F - 000

38 ENAI ENAI IntEnFlag ← 1 - F - 001

39 DISI DISI IntEnFlag ← 0 - F - 010

40 STF STF R7 ← R7 - 1; Mem[R7] ← Flags - F - 011

41 LDF LDF Flags ← Mem[R7]; R7 ← R7 + 1 c,v,n,z F - 100

E - -

--E

35

36

PUSH

POP

-

-

Team R4 – H. Lovett, A. Reddy, A. Robinson, M. Wearn

General Instruction Formatting

Instruction Type Sub-Type 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A1 Data Manipulation Register X X

A2 Immediate

B Byte Immediate

C Data Transfer 0 LS 0 0 0

D1 Control Transfer Others

D2 Jump

E Stack Operations 0 U 0 0 1 L X X 0 0 0 0 1

F Interrupts 1 1 0 0 1 1 1 1 X X X X X

0 Cond.
Ra

Ra

imm5

imm8

ICond.

Opcode Rd Ra
Rb

imm4/5

Opcode Rd

Rd Ra

imm8

imm5

1 1 1 1

LS: 0 = Load Data, 1 = Store Data U: 1 = PUSH, 0 = POP L: 1 = Use Link, 0 = Don’t use Link

Example Coding
Data Manipulation
These operations are performed by the Arithmetic Logic Unit and examples are shown below.

1 ADD R5, R3, R4 R5 ← R3 + R4 13 CMPI R3, #9 R3 - 9

2 ADDI R5, R3, #9 R5 ← R3 + 9 14 AND R5, R3, R4 R5 ← R3 AND R4

4 ADC R5, R3, R4 R5 ← R3 + R4 + c 15 OR R5, R3, R4 R5 ← R3 OR R4

5 ADCI R5, R3, #9 R5 ← R3 + 9 + c 16 XOR R5, R3, R4 R5 ← R3 XOR R4

6 NEG R5 R5 ← 0 - R5 17 NOT R5, R3 R5 ← NOT R3

7 SUB R5, R3, R4 R5 ← R3 - R4 18 NAND R5, R3, R4 R5 ← R3 NAND R4

8 SUBI R5, R3, #9 R5 ← R3 - 9 19 NOR R5, R3, R4 R5 ← R3 NOR R4

10 SUC R5, R3, R4 R5 ← R3 - R4 - NOT c 20 LSL R5, R3, #3 R5 ← R3 << 3

11 SUCI R5, R3, #9 R5 ← R3 - 9 - NOT c 21 LSR R5, R3, #3 R5 ← R3 >> 3

12 CMP R3, R4 R3 - R4 22 ASR R5, R3, #3 R5 ← R3 >>> 3
The value ‘c’ corresponds to the carry bit flag in the ALU from the previous calculation.

CMP, CMPI are comparison instructions for performing a subtraction without saving the result. The updated

status flags can then be used for a conditional branch.

Byte Immediate

These instructions ADD/SUB an 8-bit immediate value from the given register, replacing the result back in that

register. Alternatively, the same formatting is used for loading the upper/lower byte of a register with an 8-bit

immediate value.

3 ADDIB R5, #150 R5 ← R5 + 150

9 SUBIB R5, #150 R5 ← R5 - 150

25 LUI R5, #150 R5[15:8] ← 150

26 LLI R5, #150 R5[7:0] ← 150

Data Transfer
When loading data, the value at the memory location held in Ra, adds an offset held in Ro, and replaces the

returned value in register Rd. When storing data, the same functionality is used, only with data transferring in

opposite direction.

23 LDW R5, [R3, #imm5] R5 ← Mem[R3 + imm5]

24 STW R5, [R3, #imm5] Mem[R3 + imm5] ← R5

Control Transfer

This set of instructions adjust the value of the program counter by a relative amount determined by the location

of the given label. Conditions are as follows:

 BR – Branch Always – Unconditionally branch to the stated location

 BNE – Branch if != – Conditionally branch if zero status flag (z) equals zero

Team R4 – H. Lovett, A. Reddy, A. Robinson, M. Wearn

 BE – Branch if = – Conditionally branch if zero status flag (z) equals one

 BLT – Branch if < – Conditionally branch if negative status flag (n) equals one

 BGE – Branch if ≥ – Conditionally branch if negative status flag (n) equals zero

 BWL – Branch with link – Unconditionally branch to stated location, saving PC to link register (LR)

 RET – Return – Unconditionally jump to the value stored in the link register (LR)

 JMP – Jump – Unconditionally jump to the location held in register Ra plus an 5-bit offset

Stack Operations
These operations are for popping or pushing either a general purpose register or the link register onto the stack,

useful for saving register values before or during a subroutine call. PUSH pre-decrements stack pointer (R7) and

POP post-increments stack pointer (R7) for a top-down growing stack. The ‘U’ bit indicates if a PUSH or POP

operation is to be performed. If the ‘L’ bit is set, the link register value will be used instead of the value in register

Ra.

Combined Branching & Stack Example

Below is an example showing how PUSH/POP operations and branches can be used to call a subroutine. “.sub” is

a label used in assembly language to refer to a different line of code, it is converted to a relative address by an

assembler. Here it is calculated as 3 + 4 = 7, if the destination address was before the calling instruction the

relative value would be negative.

 PUSH R1 :Save R1

 PUSH R2 :Save R2

 BWL .sub :Call subroutine

 POP R2 :Restore R2

 POP R1 :Restore R1

 BR .end :Branch to end of memory

.sub PUSH LR :Save Link Register

 … :Subroutine does something

 POP LR :Restore Link Register

 JMP :Return to where subroutine was called

.end BR .end

